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ABSTRACT 

 
In this paper, an important theorem of fuzzy derivative for fuzzy complex functions which map a regular complex 
numbers into bounded closed complex complement normalized fuzzy numbers is proved. This is a modification and 
generalization of the fuzzy derivative in Sabir et al. (2012). 
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INTRODUCTION 
 
Fuzzy complex analysis was first introduced by Buckley 
and Qu (1991, 1992) that extends definitions and results 
of Dubois and Prade (1982) to the complex case. Buckley 
(1989) suggested the notion of convergence, 
differentiation and continuity of complex fuzzy function 
(Guangquan, 1991; Chun and Ma, 1998; Dianjun, 2000; 
Qiu et al., 2009; Ousmane and Congxin, 2003; 
Shengquan, 2006; Cai, 2009). As a generalization of 
Buckley’s work, several scholars continued research in 
fuzzy analysis like Wu and Qiu (1999), Zengtai and 
Shengquan (2006), Qiu and Shu (2008), Sun and Guo 
(2010), Ma and Chen (2012) and Sabir (2012). 
 
PRILIMINARIES  
 
Zadeh (1965) firstly introduced the concept of fuzzy 
subset which is a function , : 0,1  and a 
generalization of the classical set operations. 
 
Definition 1. Let  be a fuzzy subset and 0,1 , then 
(1) The α level of , denoted by  , is the crisp set 

: , . 
(2) The weak α level   of a fuzzy subset  is the non-

fuzzy set of all elements of  that grade of 
memberships are greater than . 

(3) The height of a fuzzy subset  is the number obtained 
by , . 

 
Definition 2. For any collection, : , of fuzzy 
subsets of , where  is a nonempty index set. 
(1) The union of fuzzy subsets  is defined by 

, , . 
(2) The intersection of fuzzy subsets  is defined by 

, , . 
 
(3) The complement of  is defined by ,

1 , , for all  belongs to . 
 
Definition 3. A fuzzy number  defined on the set of real 
numbers  is a function , : 0,1 , which 
satisfies: 
(1)  is upper semicontinuous. 
(2) , 0 outside some interval , . 
(3) There are real numbers ,  such that , 

,  is increasing on c, a , ,  is decreasing 
on , , and , 1, . 
 

Definition 4. A fuzzy complex number  is a mapping 
, : 0,1  if and only if: 

(1) ,  is continuous. 
(2)   is open, bounded, and connected. 
(3)   is non-empty, compact, and arcwise connected. 
 
RESULTS 
 
Definitions, results and notations on fuzzy complex 
analysis which are used in this section can be found in 
Sabir et al. (2012). 
 
Theorem 1. Let ,  be BCCCNFNs and  be a fuzzy 
meromorphic function. If  and  have 
the same zeros,  and  have the same 
zeros with the same order, and ,  

,

,  
,  then , , . 

 
Proof: By hypothesis, we have 
2 , , , , , ,    
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It follows that,  
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Hence, 
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, ,  a Contradiction.  
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