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ABSTRACT

In this paper, an important theorem of fuzzy derivative for fuzzy complex functions which map a regular complex
numbers into bounded closed complex complement normalized fuzzy numbers is proved. This is a modification and

generalization of the fuzzy derivative in Sabir et al. (2012).
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INTRODUCTION

Fuzzy complex analysis was first introduced by Buckley
and Qu (1991, 1992) that extends definitions and results
of Dubois and Prade (1982) to the complex case. Buckley
(1989) suggested the notion of convergence,
differentiation and continuity of complex fuzzy function
(Guangquan, 1991; Chun and Ma, 1998; Dianjun, 2000;
Qiu et al, 2009; Ousmane and Congxin, 2003;
Shengquan, 2006; Cai, 2009). As a generalization of
Buckley’s work, several scholars continued research in
fuzzy analysis like Wu and Qiu (1999), Zengtai and
Shengquan (2006), Qiu and Shu (2008), Sun and Guo
(2010), Ma and Chen (2012) and Sabir (2012).

PRILIMINARIES

Zadeh (1965) firstly introduced the concept of fuzzy
subset which is a function pu(4,x):X —»[0,1] and a
generalization of the classical set operations.

Definition 1. Let A be a fuzzy subset and a € [0,1], then

(1) The a-level of A, denoted by “*4, is the crisp set
{xeX:u(4d x)=al

(2) The weak a—level =4 of a fuzzy subset A is the non-
fuzzy set of all elements of X that grade of
memberships are greater than «a.

(3) The height of a fuzzy subset 4 is the number obtained
by af'™ = supyex u(4,x).

Definition 2. For any collection, {4;:i € I}, of fuzzy

subsets of X, where I is a nonempty index set.

(1) The union of fuzzy subsets A; is defined by
1(U;A;,x) = sup, u(4;, x). )

(2) The intersection of fuzzy subsets A; is defined by
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u(N;A;,x) = inf, u(4;, x).

(3) The complement of 4; is defined by u(-4;x) =
1 — u(4;, x), for all x belongs to X.

Definition 3. A fuzzy number & defined on the set of real

numbers R is a function (@, x): R - [0,1], which

satisfies:

(1) a is upper semicontinuous.

(2) u(a,x) = 0 outside some interval [c, d].

(3) There are real numbers a,b suchthatc <a < b <d,
u(a, x) is increasing on [c, a], u(@, x) is decreasing
on[b,d],and u(a@,x) =1,a<x <b.

Definition 4. A fuzzy complex number Z is a mapping
1(Z,z): € - [0,1] if and only if:

(1) w(Z,z) is continuous.

(2) “~Z is open, bounded, and connected.

(3) *Z is non-empty, compact, and arcwise connected.

RESULTS

Definitions, results and notations on fuzzy complex
analysis which are used in this section can be found in
Sabir et al. (2012).

Theorem 1. Let Z,W be BCCCNFNs and f be a fuzzy
meromorphic function. If f(z) = W and f'(z) = W have
the same zeros, f(z) = Z and f'(z) = Z have the same
zeros with the same order, and N(r,?'*f)=
o(T(r,7Y*f)) then *V*f = “V*f,

Proof: By hypothesis, we have
21(r, " f) < N(r, ") + N (r,
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— 1 1
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+o(T(r, "))

— 1 — 1 1
N (o) M)+ )
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It follows that,
— 1 — 1 1
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1
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)
+o(T(r, ¥ ) + 0 (T(r, " *f))

zy+f zy+
=N (1’, TRF_TR; AR y+Z~>
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+m (T’, z,y+f~_ Vs - z,y+f_ y+Z)

+o(T(, "))

< W27 F) 4 m 1,z )+ m (1)
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= o (T, f)) + o (10" 1)) + o (T (r, "))
+o(T(r, " ).

Hence,

N (T, m) + N <T', m) + o0 (T(‘r' Z.}’+f))

N (1 mrreg) 4 N (v + 0 (10 771)

=N (T’, m) +o0 (T(T, Z'y+f)), and

1 1

<T(r""f)+o (T(r, Z'y+f))
W) o)

<N (rarezire) + o (102777)
Therefore,
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<T (T', Z'Y+f) +T (T, m) + T(T, ZJY+f~)
+o (T(r, Z‘V+f)) a Contradiction.
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